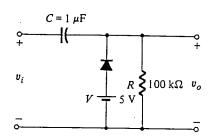


FACULTY OF ENGINEERING AND COMPUTER SCIENCE DEPARTMENT OF MECHANICAL ENGINEERING

COURSE		NUMBER	SECTION
INDUSTRIAL ELECTRONICS		ELEC 318/2	T
EXAMINATION	DATE	TIME & PLACE Room:	# OF PAGES
MID-TERM	Friday, October 23, 1998	08:45 - 10:00 SH-447	7 + 5 = 6
PROFESSOR		LAB INSTRUCTOR	
H. HONG			
MATERIALS ALLOWED 🛚 N	O YES (PLEASE SPECIFY)		
CALCULATORS ALLOWED	O 🛛 YES		
SPECIAL INSTRUCTIONS:			
ANSWER ALL FIVE (5) QUESTIONS			
RETURN EXAM QUESTIONS WITH YOUR ANSWER BOOKLET			

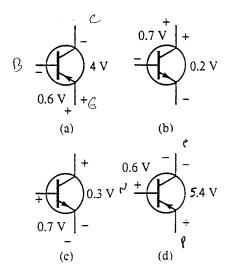

Name:	Santos.	J,C,	I.D.:	
	Surname	given names		


QUESTION #	MARKS per QUESTION	MARKS
1	4	ф
2	9	9
3	15	15
4	15	3
5	7	7
TOTAL	50 / .	3112

$$+7 = 46\frac{1}{50} = (14)$$

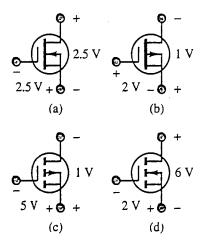
Question #1 (4 marks)

For the square wave input v_i , sketch the steady-state output voltage v_o . The diode has a cut-in voltage $V\gamma = 0.7 \text{ V}$.



Question #2 (a=1, b=8 $\rightarrow\rightarrow\rightarrow$ 9 marks)

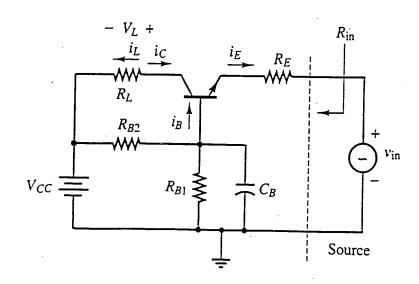
For each of the transistors shown in the figure:


- a) Identify the type of BJT transistor.
- b) Determine the operating state.

Question #3 (a=2, b=1, c=4, d=8 $\rightarrow \rightarrow \rightarrow$ 15 marks)

The transistors shown in the figure have $|V_T| = 3 \text{ V}$. For each transistor:

- a) Identify the type of MOSFET transistor.
- b) When the MOSFET is in the active region, indicate the direction of convention current flow.
- c) Sketch the drain characteristics of i_D versus v_{DS} . Indicate V_T on the sketch.
- d) Determine the operating state of the MOSFET.



Question #4 (a=4, b=1, c=3, d=3, e=4 $\rightarrow \rightarrow \rightarrow$ 15 marks) For the circuit shown:

- a) Find the quiescent point of the transistor.
- b) Draw the AC equivalent circuit, using h parameters.
- c) Find the voltage gain v_L/v_{in} ($h_{ie} = 2.6 \text{ k}\Omega$, neglect h_{re} and h_{oe}).
- d) Find the input resistance r_i ($h_{ie} = 2.6 \text{ k}\Omega$, neglect h_{re} and h_{oe}).
- e) Find the expression for the output resistance r_o as seen by the load (only neglect h_{re}).

Information if required:

$$\begin{split} V_{BE} &= f_{I}(i_{B} \;, V_{CE} \;) \\ i_{C} &= f_{2}(i_{B} \;, V_{CE} \;) \end{split} \qquad h_{ie} = \left. \frac{\partial v_{BE}}{\partial i_{B}} \, \right|_{I_{BQ}} \; (\Omega) \\ h_{oe} &= \left. \frac{\partial i_{C}}{\partial v_{CE}} \, \right|_{V_{CEQ}} \; (S) \\ h_{fe} &= \left. \frac{\partial i_{C}}{\partial i_{B}} \, \right|_{I_{BQ}} \; \left(\frac{A}{A} \right) \\ h_{re} &= \left. \frac{\partial v_{BE}}{\partial v_{CE}} \, \right|_{V_{CEQ}} \; \left(\frac{V}{V} \right) \end{split}$$

Amplifier

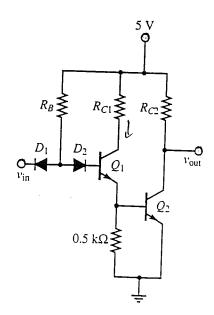
$$R_E = 50 \ \Omega$$
 $V_{CC} = 10 \ V$
 $R_L = 100 \ \Omega$ $R_{B1} = 513 \ \Omega$
 $\beta = 75 = h_{fe}$ $R_{B2} = 2730 \ \Omega$

Assume the BJT has $V_{\gamma} = 0.6$ V.

Question #5 (a=4, b=2, c=1 $\rightarrow \rightarrow \rightarrow$ 7 marks)

For the inverter circuit shown:

$$R_{\rm B} = 4 \text{ k}\Omega$$

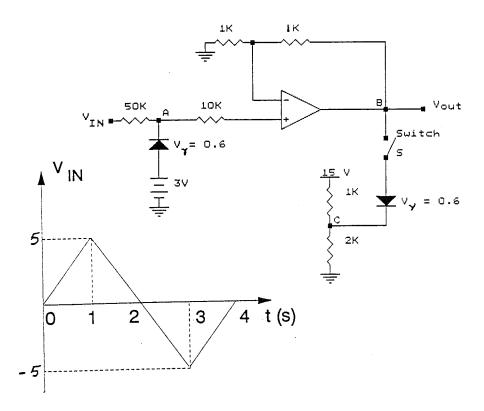

$$R_{\rm C1} = 2.5 \text{ k}\Omega$$

$$V_{\rm CE(sat)} = 0.2 \text{ V}$$

$$\beta = 100 \text{ (active region)}$$

$$V\gamma = 0.6 \text{ V}$$

- a) Show that transistor Q_1 saturates when v_{in} is high.
- b) How much current is flowing into the base of transistor Q_2 ?
- b) Determine R_{C2} to ensure that transistor Q_2 also saturates.

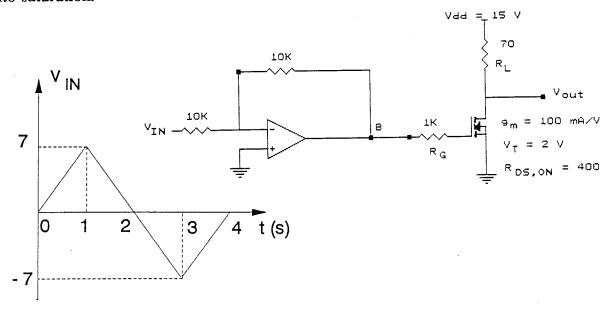

CONCORDIA UNIVERSITY - DEPARTMENT OF MECHANICAL ENGINEERING

COURSE: INDUSTRIAL ELECTRONICS	NUMBER ELEC 318		SECTION: X
EXAMINATION:	DATE:	TIME:	#OF PAGES
FINAL	Dec. 16, 1992	09:30-12.30	6
INSTRUCTOR:			
Ramesh RAJAGOPAI	AN		
MATERIALS ALLO	WED:	0	¥ YES
O	electronic calculatorsed, 8.5" x 11" sheet o	-	
SPECIAL INSTRUC	ΠONS:		
_	rry equal marks. on number on top rig	tht hand side of ev	very page.

Question 1

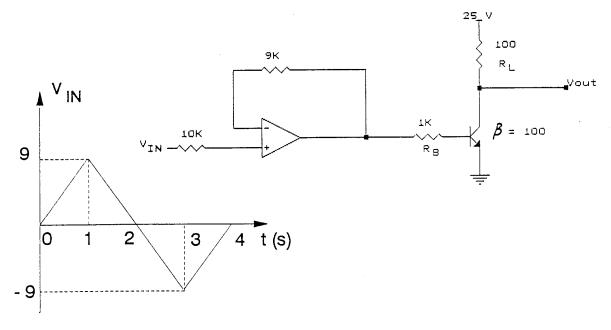
A 4-bit number is an input to a logic circuit. The number is represented as A ₃A ₂A ₁A ₀. The output of the logic circuit is 1 if and only if the decimal equivalent of the input number (A) is divisible by 2. Construct a truth table showing all possible combinations. Minimize if necessary using K-Map. Implement the minimum form using minimum number of "2-input" gates. Assume inverse of each signal is available.

Draw the output voltage waveform for the given input waveform when the switch S is (1) open and (2) closed. Name each part of the circuit.

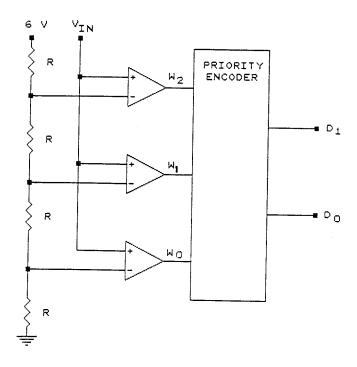


Question 3

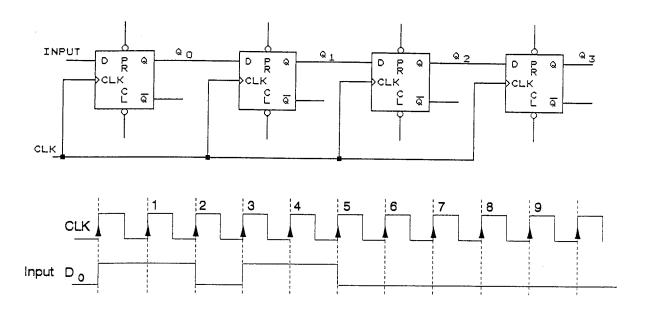
Write the Boolean expression for the truth table given below. Implement this truth table using gates. Name the circuit.


S ₁	S ₀	Output Y
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D_3

For the given input waveform, draw the waveform of the voltage across R_L and V_{out} , and the power dissipated in the transistor. Find the value of R_G required to drive the transistor into saturation.



Question 5


Find the mode of operation of the transistor for the given input waveform. Draw the waveform across R_L and compute the power dissipated by the transistor for each time interval. Find the minimum value of i_B that would drive the transistor into saturation. Find the corresponding value of V_{IN} .

Identify the function performed by the circuit. Tabulate the voltage levels of W $_0$, W $_1$ and W $_2$, and the outputs of the priority encoder (D $_0$, D $_1$), for V $_{IN} = 0$, 1.6, 3.1 and 5.0 V, assuming that 0 V corresponds to a logic level-0 and saturation level (10 V) to logic level-1. Write the Boolean equation of the priority encoder used in this circuit.

Name the circuit given below. Sketch the waveform of Q $_{0}$, Q $_{1}$, Q $_{2}$ and Q $_{3}$ for the given input signal.

