COMP 231/2 — Fall 1994 Midterm No. 1

- 1. Prove or disprove whether $(p \to (q \to r)) \to ((p \land q) \to r)$ is a tautology.
- 2. Assume

the UoD of x is "persons", the predicate S(x) denotes "x is a student", F(y) denotes "y is food", y is "stuff", E(x, y) denotes "x eats y" W(y) denotes "y is white".

Express the following in predicate logic:

- (a) Some students eat any food.
- (b) For every student there is at least one food that the student doesn't eat.
- (c) There is a student who eats only white food.
- 3. Show that $\forall x \ P(x) \lor \forall x \ Q(x)$ and $\forall x \ (P(x) \lor Q(x))$ are not logically equivalent.
- 4. Let $A = \{(a), (\{a\}, a\}, a\}$. Give the power set P(A).
- 5. Prove using set equality or disprove using a counterexample that for all sets A, B, and C it is true that
 - (a) $A (B C) = (A B) \cup (A \cap C)$
 - (b) $A (B \cup C) = (A B) \cup (A C)$
- 6. Show whether the following are bijections: (Hint: Remember that a bijection is a function that is both one-to-one and onto.)
 - (a) $f: \mathbf{R} \longrightarrow \mathbf{R}$, where $f(x) = \frac{x^2+1}{x^2+2}$
 - (b) $f: \mathbf{Z} \longrightarrow \mathbf{Z}$, where $f(x) = \lceil \frac{x}{2} \rceil$ (Hint: [a] is the function that maps any real number to the next larger integer, thus [a] = b, where $b - 1 < a \le b$.)
 - (c) $f: \mathbf{R} \longrightarrow \mathbf{R}$, where f(x) = 2x + 1.

COMP 231/4-03, WINTER 1993

CONCORDIA UNIVERSITY

TEST 1.

Instructor: A. Krzyzak.

Date: February 11, 1993. Duration 75 minutes.

Total points: 100. 15% of final mark.

- 1. (20%) Is it true that $(p \rightarrow q) \rightarrow r$ is equivalent to $p \rightarrow (q \rightarrow r)$? Prove your answer using propositional laws.
- 2. (20%) Given two sets A and B, prove that $A \cup B \subseteq A \cap B$ implies A = B.
- 3. (20%) Write each of the following predicates in symbolic form using appropriate quantifiers.
 - a) (10%) " N_0 is the least x for which P(x) is true.
 - b) (10%) "There is a unique x for which P(x) is true".
- (20%) Given any integer n > 1, prove by contradiction that the least integer > 1 which divides n must be prime. You must state the negation of the theorem.
- 5. (20%) Let $A = B = \mathcal{P}(S)$, where $\mathcal{P}(S)$ is a power set of set S. If $X \in \mathcal{P}(S)$, let $f: A \to B$ and $f(X) = \overline{X}$.
 - a) Prove whether f is one-to-one and onto.
 - b) Prove whether the inverse function f^{-1} exists. If the inverse exists find it.
 - 6. (20%) (bonus) Given $f: A \to B$, prove the following.
 - f is one-to-one $\leftrightarrow \forall C \subseteq A(f \circ f^{-1}(C) = C)$

d for (c) = c

Concordia University

Department of Electrical and Computer Engineering

COEN 231/2 U Fall 1996 Discrete Mathematics

Final Examination

Value: 65% of final grade

Time: 3 hours Total marks: 65

Materials allowed: Two 8 and 1/2 by 11-crib sheets (both sides) Any inanimate computing aids you can manage to carry in.

Note: It is not necessary to work out factorials on your calculator. Doing so will not give you extra marks.

1a).	A deck of 52 cards contains 4 aces, 4 kings, 4 queens 4 jacks, 4 tens, A bridge hand is formed by selecting 13 cards at random.	and 4 two.
	How many bridge hands contain exactly 3 aces and 2 queens?	(4 marks)
1b).	Find the number of ways of distributing 8 coins among four containers wi) There are no restrictions.	here: (2 marks)
	ii) Container number four must have an odd number of coins.	(4 marks)
2a).	Using truth tables, prove the following distributive law of logic: $(p \land q) \lor r \Leftrightarrow (p \lor r) \land (q \lor r)$.	(5 marks)
2b).	Using the laws of logic (not truth tables) prove that: $p \rightarrow (p \land q) \Leftrightarrow p \rightarrow q$.	(5 marks)
2c).	Prove the following argument: $(p \rightarrow q) \rightarrow (r \land t)$ $(r \land t) \rightarrow s$ $\neg s$	
	1.70	(5 marks)

2d). Let $x \in \mathbb{R}$. We are given the open two statements p(x): $x^2 \ge 4$ and q(x): x < 6.

Determine the values of x such that $p(x) \land q(x)$ is true. (5 marks)

3. Prove by induction that the solution to the difference equation: $v = 0.5v + \pi$, $v_0 = 0.$ is

$$y_n - 0.5y_{n-1} = n$$
, $y_0 = 0$, is

 $y_n = 2[(0.5)^n + n - 1].$

(Do not prove by finding the solution - this is a question on induction.) (10 marks)

4a). Find the solution to $y_n = ay_{n-1} = b^n$, $y_0 = 1$

(8 marks)

4b). It is determined that the unit pulse response of a given linear time invariant system is $g_n = \{1,2,3,2,1,0,0..\}$.

i) For a given input $x_n = \{1,1,1,0,0,.....\}$, find the output y_n . Plot the first ten terms of your result. (4 marks)

ii) Suppose the input is $x'_n = \{0,0,2,2,2,0,....\}$.

Use the results of part a) to find the new output. Plot the first ten terms of your result.

(3 marks)

5a). A program segment to determine the square root of a number reads as follows:

message := "Error - cannot take square root of a negative number"; IF $x \ge 0$ THEN y := SQRT(x) ELSE y := message; Writeln y;

Given $x \in \mathbb{R}$,

- i) define the sets A and B such that the cartesian product A×B gives rise to the relation R as described in the program segment. (3 marks)
- ii) Is the relation a function?. Give your reasons.

(2 marks)

5b). Given $A = \{1,2,3,4\}$ and the function f: A->A = $\{(1,2),(2,4),(3,1),(4,3)\}$, show that $f^{0}f^{0}f^{0}f = f^{4} = I_{A}$. (5 marks)

Concordia University

Department of Electrical and Computer Engineering

COEN 231/2 U Fall 1997 Discrete Mathematics

Final Examination

Value: 65% of final grade

Time: 3 hours Total marks: 65

Materials allowed: Two 8 and 1/2 by 11 crib sheets (both sides) Any inanimate computing aids you can manage to carry in.

Note: It is not necessary to work out factorials on your calculator. Doing so will not give you extra marks.

1a).	In how many ways can a particle move in the xy plane from the origin	n to the poin
	(7,6) if each move is one of the following types:	-
	$(\mathbf{H})_{\mathbf{r}}(\mathbf{r},\mathbf{r}) = (\mathbf{r}+1,\mathbf{r})_{\mathbf{r}}(\mathbf{V})_{\mathbf{r}}(\mathbf{r},\mathbf{r}) = (\mathbf{r}+1,\mathbf{r})_{\mathbf{r}}$	(4 1)

(H):
$$(x,y) \to (x+1,y)$$
; (V): $(x,y) \to (x,y+1)$? (4 marks)

- 1b). What is number of ways of distributing 12 identical coins among five containers given that each container must have a least one coin? (3 marks)
- 1c) What is the number of ways of arranging 12 distinct books among five shelves? The order of the books on a shelf is not important. (3 marks)
- 2a). Using truth tables, prove the inference rule: $\{[p \land (p \rightarrow q)] \rightarrow q\} \Rightarrow T_0. \tag{5 marks}$
- 2b). Using the laws of logic (not truth tables) prove that: $(a \land b) \rightarrow c \Leftrightarrow a \rightarrow (b \rightarrow c) \Leftrightarrow b \rightarrow (a \rightarrow c)$. (5 marks)
- 2c). Prove the following argument:

$$p \rightarrow q$$
 $q \land r \rightarrow s$
 r
 $t \rightarrow -s$

	rk) rks)	
ii) Set up the logical argument (1 ma iii) Prove the argument. (3 ma		
3a). Prove by induction that:		
$S_n = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2; n \in \mathbb{Z}^+.$ (5 ma)	rks)	
3b) Given A = {1,2,3,4,5,6,7,8,9}, i) How many subsets of A contain 5 elements? ii) How many 5 element subsets of A contain the elements 3 and 5? (2 mag) (3 mag)	•	
4a). Convolve $x = \{3,1,3,1,3,1,\}$ and $h = \{0.25, 0.25, 0.25, 0.25, 0, 0,\}$. Plot the first ten terms of your result. (5 ma	ırks)	
4b). Solve the following first-order difference equation.		
$y_n - ay_{n-1} = 1 - b^n$. (5 ma	irks)	
4c). Solve the following second-order difference equation.		
$y_n - 0 / 5 \sqrt{3} y_{n-1} + 0.81 y_{n-2} = \varepsilon_{n-1}$ (5 ma	ırks)	
5a). Given the Cartesian product $\mathbb{Z} \times \mathbb{Z}$ and the relation $\mathbb{R} = \{(x,y) x \in \mathbb{Z}, y \in \mathbb{Z}, y \in \mathbb{Z}, y \in \mathbb{Z}^2 + 1\},$		
i) Say why the relation is a function? (2 ma	ırks)	
ii) Identify the domain, the co-domain and the range of the function (3 ma	ırks)	
 5b). Given A = {a,b,c,d}, i) Construct one possible bijective functional mapping f: A→A. ii) For your particular f, show in tabular format, that f' = I_A. iii) How many possible bijective functions f: A→A are there? (1 mage) 	arks) ark)	
Bonus marks - beyond the total of 65 for the exam. Do not attempt this difficult question watil you have reviewed and are satisfied with your answers		
other questions.		
Given $A = \{a,b,c,d\}$ and all possible bijective functions $f: A \rightarrow A$, show that $\forall f \ [f' = J_A]$ (5 ma	arks)	

A William Street